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Abstract. This paper presents Smt-Switch, an open-source, solver-
agnostic API for SMT solving. Smt-Switch provides simple, uniform,
and high-performance access to SMT solving for applications in areas
such as automated reasoning, planning, and formal verification. It defines
an abstract interface, which can be implemented by different SMT
solvers. The interface allows the user to create, traverse, and manipu-
late terms, as well as dynamically dispatch queries to various underlying
SMT solvers.

1 Introduction

Smt-Switch is an open-source, solver-agnostic C++ API for interacting with
SMT-LIB-compliant SMT solvers. While SMT-LIB [1] provides a standard tex-
tual interface for SMT solving, there are limitations to that interface. In partic-
ular, applications that need to manipulate solver formulas or respond to solver
output are easier and more efficient with an integrated API. Common approaches
for addressing these limitations include committing to a specific solver (and its
API) or using a custom internal expression representation, which is then trans-
lated to SMT-LIB and sent to a solver. In contrast, Smt-Switch provides a
generic in-memory API, but without a custom representation, instead providing
a lightweight wrapper around the underlying solver expressions. Smt-Switch
already has support for many prominent SMT solvers and a variety of theories,
and it provides an extensible abstract interface which makes it easy to add new
solvers and theories. Smt-Switch is open-source and uses the permissive BSD
license. It is available at https://github.com/makaimann/smt-switch.

The remainder of the paper is organized as follows. We start by describing
the architecture of the tool in Sect. 2. Section 3 illustrates how to use the API
with a simple example. We cover related work in Sect. 4 and give an experimental
evaluation in Sect. 5. Finally, Sect. 6 concludes.
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Fig. 1. Architecture diagram

2 Design

Figure 1 depicts an overview of the Smt-Switch architecture. After some gen-
eral comments, we explain the various components in the figure. Throughout this
paper, we refer to the external code of some SMT solver used by Smt-Switch as
an underlying solver, and we use backend to refer to the Smt-Switch wrapper
for an underlying solver. Smt-Switch delegates as much of the functionality
to the underlying solvers as possible. This reduces redundancy and results in
simpler implementations and lower memory overhead. The API is implemented
in C++, and Smt-Switch also provides Python bindings using Cython [4].

Building and Linking. Smt-Switch uses CMake [13]. The build infrastruc-
ture is designed to be modular with respect to backend solvers. This allows the
user to build Smt-Switch once and then link solver backends to their project
as needed. The build configuration script also has options to enable static and
debug builds.

Testing. We use GoogleTest [10] and Pytest [14] for the C++ test infrastructure
and the Python test infrastructure, respectively. Tests are parameterized by
solver so that each test can easily be run over all solvers.

Custom Exceptions. Smt-Switch defines its own set of exceptions inher-
ited from std::exception. Each of them has a std::string message. The
defined exceptions are: i) SmtException – the generic base class exception,
ii) NotImplementedException, iii) IncorrectUsageException, and iv)
InternalSolverException.

License. The Smt-Switch code is distributed under the BSD 3-clause license
and provides setup scripts for building underlying solvers with similarly liberal
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open-source licenses. For solvers with more restrictive licenses, users are respon-
sible for obtaining the underlying solver libraries themselves.

2.1 Interface

Smt-Switch provides abstract classes that define an interface for interacting
with an underlying SMT solver. The interface corresponds closely to SMT-LIB
version 2.6 [1], making it straightforward to connect solvers that are SMT-LIB
compliant. At the Smt-Switch API level, the user interacts with smart pointers
to the abstract classes. The virtual method functionality of C++ allows the
interface to be agnostic to the underlying solver. The three primary abstract
classes are: i) AbsSort; iii) AbsTerm; and iii) AbsSmtSolver. The Op class
is not abstract and does not need to be implemented by the backend. However,
the backend must interpret an Op when building terms.

AbsSort. The AbsSort abstract class represents logical sorts in Smt-Switch.
A Sort is a pointer to an AbsSort. An enum called SortKind is used to
represent built-in SMT-LIB sorts. In some cases, additional parameters are
needed to create a sort. For example, bitvector sorts all have SortKind BV,
and to create a bitvector sort, an additional parameter for bit-width is needed.
Smt-Switch currently supports the following sorts, as they are defined in the
SMT-LIB standard: i) Booleans, ii) integers, iii) reals, iv) fixed-width bitvectors,
v) uninterpreted functions, vi) arrays, vii) uninterpreted sorts, and viii) algebraic
datatypes. Each backend is responsible for creating an AbsSort object, given
a SortKind (and its parameters if any). The backend must also be able to
provide the SortKind and parameter information from a given sort.

Op. Op is a struct that represents logical function operators in Smt-Switch.
As with sorts, there is an enum (called PrimOp) that contains built-in SMT-
LIB functions from various theories. An Op stores a PrimOp and up to
two integer indices. Unindexed operators are defined only by their PrimOp.
Indexed operators use one or two indices. For example, integer addition is repre-
sented as PrimOp::Plus without any indices, while bitvector extraction uses
PrimOp::Extract together with two indices specifying the most and least sig-
nificant bits of the extracted slice. Smt-Switch uses a simple naming scheme
for PrimOp’s based on the corresponding SMT-LIB names.

AbsTerm. The AbsTerm abstract class represents logical terms, and a Term
is a pointer to an AbsTerm. A Term can be a symbol (uninterpreted constant
or function), a parameter (variable to be bound by a quantifier), a value (term
corresponding to a model value such as 0 or 1), or an operator applied to one
or more terms. Parameters are bound using the Forall or Exists operators.
Terms can be queried to obtain their Sort, Op, and children (if a Term is
not a function application, its Op is null). Note that, unlike the current SMT-
LIB standard, we consider uninterpreted functions themselves to be terms. To
create an uninterpreted function application, the Apply Op is used, where the
first argument is the function to be applied and the rest of the arguments are
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Terms representing the arguments to the function. This simplifies the interface
and also makes it possible to support higher-order constructs if an underlying
solver supports it. It also facilitates an invariant maintained by Smt-Switch:
any Term with a non-null operator is equal to the result of querying its Op and
children and then creating a new Term with the obtained Op and children.

AbsSmtSolver. The AbsSmtSolver class provides the main interface that
a user interacts with. It has methods for declaring Sorts, building Terms,
asserting formulas, and checking for satisfiability. The method names mirror the
commands of SMT-LIB, replacing “-” with “ .” One exception is assert, which
is assert formula in Smt-Switch to avoid clashing with the C assertion
macro. SmtSolver is a pointer to an AbsSmtSolver.

Solver Factories. A solver factory defines a single static method: create. Each
backend solver implementation defines a corresponding factory in a dedicated
header file. The create function produces an SmtSolver for its correspond-
ing backend. It takes a single Boolean parameter called logging, which specifies
whether to add a layer to keep track of the structure of terms being created. This
is useful if the underlying solver does not preserve term structure (e.g., if it per-
forms on-the-fly rewriting of created terms) and the user needs the invariant that
if you create a term with a given Op and children and then query the Op and chil-
dren of the new term, you get back the Op and children you started with (note
that this is the inverse of the invariant mentioned in the AbsTerm section above).
Smt-Switch currently has backends for Boolector [18], Bitwuzla [17],
CVC4 [3], MathSAT [5], Yices2 [6], and Z3 [16]. It also provides two more
special implementations of AbsSmtSolver: i) PrintingSolver – a wrapper
around a backend that logs all API calls and dumps them as an SMT-LIB script
to an output stream – especially useful for debugging as it provides a way to
reproduce a behavior seen in Smt-Switch using just the underlying solver with
an SMT-LIB file; and ii) GenericSolver – communicates interactively with
an arbitrary SMT-LIB-compliant solver binary through pipes.

2.2 Additional Features

Analysis. Smt-Switch provides utility functions for i) gathering all sub-
terms matching some given criteria in a term; ii) reducing an unsatisfiable
core; iii) returning a flat list of all the arguments of a commutative and
associative operator (e.g., Boolean and or or); iv) manipulating disjoint sets
(union-find data structures) of Smt-Switch Terms; and v) traversing and
rewriting Smt-Switch Terms – by inheriting from the IdentityWalker or
TreeWalker classes. In the former, each sub-term is visited once, regardless of
how many times it occurs in the formula. In the latter, every occurrence of every
sub-term is visited.

Term Translation. The TermTranslator class can be used to copy terms
from one backend solver to another. The only requirement for this to work is
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that the source solver must implement the term traversal interface methods. This
functionality makes it easy to communicate information among several solvers.

Portfolio Solving. Smt-Switch provides infrastructure for using a portfolio
of backend solvers to solve a single problem in parallel (i.e., the first to finish
reports the answer).

Additional Frontends. In addition to its C++ library, Smt-Switch provides
a Flex [20] and Bison [8] parser for the SMT-LIB language, and a Python module
for translating between PySMT [9] terms and Smt-Switch terms.

3 Example

In this section, we demonstrate the Smt-Switch API with a simple example.
Figure 2 (left) uses Smt-Switch with the CVC4 backend to solve simple queries
over bitvectors and uninterpreted functions. It starts by including C++ and
Smt-Switch headers and invoking the relevant using declarations. The main
function then begins by creating a backend SmtSolver using CVC4 without
logging. Note that changing the backend solver can easily be done by only chang-
ing this line and the factory being included. The logic is set to quantifier-free
formulas over bitvectors and uninterpreted functions (QF UFBV), and solver
options are used to enable incremental solving, models, and the production of
“unsat assumptions” (an SMT-LIB variant of unsatisfiable core functionality, in
which the core is taken from a specified set of assumptions). This is followed by
creating two sorts: a bitvector sort of width 32, and a function sort with that
sort as both domain and codomain. The next three lines create two bitvector
symbolic constants and an uninterpreted function. Next, the terms x0 and y0
are created, corresponding to the least significant half of the bitvectors x and
y, respectively, by applying the bitvector extract operator with upper index 15
and lower index 0.

We then assert that applying the function to x and y results in different
values and push a new context, in which we assert that the bottom halves of x
and y are equal. This is followed by a successful satisfiability check, after which
we print the value assigned to x and pop to the top level context. The query is
satisfiable because x and y can have different most significant bits, and thus the
function applications could return different values.

We then create a term that represents the bit-wise and of x and y and
three Boolean terms built in various ways from x and y. The final satisfiability
check is done with these terms as assumptions and is unsatisfiable, because the
assumptions entail that x equals y, contradicting the top-level assertion that f
applied to x is different from f applied to y. Finally, we extract a subset of the
assumptions that (together with existing assertions) is sufficient for unsatisfi-
ability. The output of the program is shown at the top right-hand side of the
figure. Looking at the output, we can see that only the last two assumptions are
needed for unsatisfiability.

The remainder of the right-hand side of Fig. 2 shows the corresponding SMT-
LIB commands for the C++ code. An artifact containing the example in both
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Fig. 2. Left: C++ API Example. Right: the output from running the program, as well
as the SMT-LIB script that corresponds to the C++ example.

C++ and Python (as well as scripts for reproducing the results in Sect. 5) is
available at https://doi.org/10.6084/m9.figshare.14566449.v1.

https://doi.org/10.6084/m9.figshare.14566449.v1


Smt-Switch 383

4 Related Work

The most closely related tools are smt-kit [11] and metaSMT [19], other C++
APIs for SMT solving. Both utilize templates to be solver agnostic and have
term representations that are separate from the underlying solver, as opposed
to Smt-Switch which provides an abstract interface and only a light wrapper
around the term representations of the underlying solvers. This design choice
reduces overhead and keeps maintenance simple. metaSMT makes clever use of
C++ template meta-programming to help reduce its overhead. Furthermore, it
provides several features including bit-blasting and infrastructure for portfolio
solving. However, metaSMT only supports bitvectors, arrays, and uninterpreted
functions. Adding new theories to either smt-kit or metaSMT would likely be
a bigger undertaking than in the comparatively simple Smt-Switch. Neither
smt-kit nor metaSMT appear to be under active development since 2014 and
2016, respectively.

Two other related tools are PySMT [9] and sbv [7]. PySMT is a solver-agnostic
SMT solving API for Python. PySMT has its own term representation and trans-
lates formulas to the underlying solvers dynamically once they are asserted. It
also uses a class hierarchy to support different solvers. sbv is a solver-agnostic
SMT-based verification tool for Haskell. It provides its own datatypes for repre-
senting various SMT queries and communicates with solvers through SMT-LIB
with pipes. A similar related tool in the context of SAT-solving is PySAT [12],
which provides a solver-agnostic Python interface to SAT-solvers.

5 Evaluation

We evaluate Smt-Switch by comparing several state-of-the-art SMT solvers
with Smt-Switch (using backends for those same solvers). We use default
options for the (underlying) solvers in both cases.1 We compare on SMT-LIB [2]
divisions with bitvectors and arrays, because all solvers support these theories
(we use the SMT-LIB frontend for Smt-Switch). We ran on all combinations
of incremental vs. non-incremental, and quantified vs. quantifier-free for those
theories.2 We sampled benchmarks from other divisions and obtained compara-
ble results. All experiments were run on a 3.5 GHz Intel Xeon E5-2637 v4 CPU
with a timeout of 20 min and a memory limit of 8 Gb.

Our results are shown for non-incremental and incremental benchmarks in
Figs. 3 and 4, respectively. The total number of benchmarks in the division is
shown next to the logic in the top row. The tables display the number solved

1
GitHub Commit or Version
Smt-Switch: 17c57ac0f0574cf76125ead56a598fce15c56004
Boolector: 95859db82fe5b08d063a16d6a7ffe4a941cb0f7d
CVC4: 3dda54ba7e6952060766775c56969ab920430a8a
MathSAT: 5.6.4 (697e45d7ef56)
Yices2: 98fa2d882d83d32a07d3b8b2c562819e0e0babd0
Z3: 6cc52e04c3ea7e2534644a285d231bdaaafd8714

.

2 Note that ABV – incremental, quantified arrays and bitvectors does not have any
benchmarks in SMT-LIB.
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solver QF BV (41713) QF ABV (15084) BV (5846) ABV (169)
btor 41313 (6.1s) 15045 (1.2s) 5544 (3.8s) -
ss-btor 41298 (6.0s) -1.8% 15045 (1.2s) 3.5% 5543 (3.7s) -4.0% -
bitwuzla 41366 (5.8s) 15046 (1.0s) 5557 (4.5s) -
ss-bitwuzla 41357 (6.2s) 5.8% 15046 (1.0s) 2.2% 5559 (4.5s) 0.6% -
cvc4 38424 (14.2s) 14480 (8.5s) 5465 (1.1s) 17 (0.1s)
ss-cvc4 38425 (15.2s) 6.9% 14618 (4.4s) -48.1% 5472 (1.0s) -13.6% 17 (0.1s) 6.2%
msat 39609 (17.3s) 14940 (2.7s) - -
ss-msat 39598 (18.5s) 6.7% 14937 (2.9s) 6.1% - -
yices2 40707 (5.8s) 15015 (2.1s) - -
ss-yices2 40695 (6.1s) 4.7% 15007 (2.2s) 9.1% - -
z3 40261 (15.6s) 14916 (3.0s) 5522 (1.5s) 44 (2.4s)
ss-z3 40092 (15.9s) 1.7% 14915 (2.8s) -5.3% 5523 (1.8s) 22.5% 44 (1.5s) -40.3%

Fig. 3. Results on non-incremental SMT-LIB benchmarks.

and average runtime on commonly solved instances. The number solved for incre-
mental benchmarks is the sum of all completed satisfiability checking calls. An
incremental benchmark is counted as commonly solved for the average runtime
calculation if both solvers completed all queries. The Smt-Switch rows also
show the percent increase in runtime when using Smt-Switch.

The data are a rough approximation of the overhead incurred when using
Smt-Switch. It is rough because our experiment measures parsing time as
well as expression construction and solving time. CVC4, for example, uses an
ANTLR-based parser, which is a bit slower than other parsers. There is also some
noise due to differences in how a solver’s API performs relative to its standalone
binary. For example, one outlier in the incremental MathSAT QF BV results
skews the overhead significantly for that dataset, though this is due to some
difference in the search rather than parsing or expression-building overhead.
When Smt-Switch solves fewer benchmarks, it is often due to benchmarks
that were already close to the timeout with the standalone solver. Overhead is
most pronounced on large files, where both parsing and expression-building are
exercised more often. Still, the data over many benchmarks and solvers does
suggest that the overhead of using Smt-Switch is low, generally less than 10%
(and some of this is due to parsing differences). Given the flexibility provided by
Smt-Switch, this level of overhead should be acceptable for many applications.

solver QF BV (2589) QF ABV (1272) BV (18)
btor 52375 (6.5s) 3243 (21.5s) -
ss-btor 52395 (6.9s) 5.8% 3247 (21.1s) -1.8% -
bitwuzla 52366 (7.1s) 3247 (22.4s) 12445 (1.6s)
ss-bitwuzla 52366 (7.3s) 2.8% 3246 (22.9s) 2.2% 12445 (0.8s) -49.8%
cvc4 51262 (17.5s) 2504 (22.1s) 36097 (54.4s)
ss-cvc4 51252 (15.4s) -12.2% 2740 (2.3s) -89.6% 35852 (26.0s) -52.3%
msat 52333 (8.4s) 3121 (5.7s) -
ss-msat 52255 (10.0s) 19.4% 3119 (6.3s) 10.5% -
yices2 52538 (6.2s) 3242 (6.3s) -
ss-yices2 52490 (6.7s) 7.0% 3243 (6.7s) 6.0% -
z3 52347 (18.1s) 2911 (31.3s) 37433 (33.6s)
ss-z3 52238 (18.2s) 0.6% 2871 (30.0s) -4.2% 37231 (25.0s) -25.6%

Fig. 4. Results on incremental SMT-LIB benchmarks.
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6 Conclusion

We presented Smt-Switch, a solver-agnostic C++ API for SMT solving. This
system is open-source, supports a variety of solvers and theories, and has already
been used in several projects [15,21]. Future work includes i) further reducing
the overhead with additional performance tuning; ii) support for more theories
(e.g., the floating point and string theories); and iii) providing additional utility
functions and classes.
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21. Zohar, Y., Irfan, A., Mann, M., Nötzli, A., Reynolds, A., Barrett, C.: lazybv2int

at the SMT Competition 2020. https://github.com/yoni206/lazybv2int (2020)

https://arxiv.org/abs/2006.01621
https://doi.org/10.1007/978-3-319-96145-3_32
https://github.com/westes/flex
https://github.com/yoni206/lazybv2int

	Smt-Switch: A Solver-Agnostic C++ API for SMT Solving
	1 Introduction
	2 Design
	2.1 Interface
	2.2 Additional Features

	3 Example
	4 Related Work
	5 Evaluation
	6 Conclusion
	References




